

2021 ASSESSMENT MATERIALS

GCSE CHEMISTRY

Chemistry Test 1: Atomic structure and the periodic table and Bonding, structure and the properties of matter (Foundation)

Total number of marks: 36

0 1 This question is about atomic structure.

Figure 1 represents an atom of element Z.

0 1 . 1 Name the parts of the atom labelled **A** and **B**.

Choose answers from the box.

[2 marks]

0 1 . 2 Which particle has the lowest mass?

Choose the answer from the box.

[1 mark]

0 1 This question is about the elements in Group 7 of the periodic table.

Table 1 shows the melting points and boiling points of some of the elements.

Table 1

Element	Melting point in °C	Boiling point in °C
Fluorine	-220	-188
Chlorine	-101	-35
Bromine	-7	59

0 1.1	What is the state of bromine at 100 °C?	
	Use Table 1 .	F4
	Tick (✓) one box.	[1 mark]
	Gas	
	Liquid	
	Solid	
0 1.2	What temperature does chlorine gas condense at to form a liquid?	
	Use Table 1 .	[1 mark]
	Temperature = °C	[r man,
0 1.3	Complete the sentences.	[2 marks]
	Going down Group 7 the melting pointsincreases	
	This is because the size of the molecules increases so the	
	intermolecular forcesincreqses	
	A teacher investigated the reaction of iron with chlorine.	
	Figure 1 shows the apparatus used.	
	Figure 1	
	Iron	

Heat

➤ Excess chlorine gas out

Glass tube

Chlorine gas in —

0 1.4	Why did the teacher do the investigation in a fume cupboard?
	Tick (✓) one box. [1 mark]
	Chlorine gas is coloured.
	Chlorine gas is flammable.
	Chlorine gas is toxic.
0 1.5	The word equation for the reaction is:
	iron + chlorine → iron chloride
	Iron chloride is a solid.
	The teacher weighed the glass tube and contents:
	before the reaction
	after the reaction.
	What happened to the mass of the glass tube and contents during the reaction?
	Give one reason for your answer.
	[2 marks]
	The mass of the glass tube and contents increases.
	Reason the mass of chlorine gas was not included before the
	reaction when it reacts with ivon to form iron chloride, the mass

The teacher repeated the investigation with bromine gas and with iodine gas.

of iron chloride contributes to the increase in mass.

Table 2 shows the results.

Table 2

Element	Observation
Chlorine	Iron burns vigorously with an orange glow
Bromine	Iron burns with an orange glow
lodine	Iron slowly turns darker

0 1.6 Fluorine is above chlorine in Group 7.

Predict what you would observe when fluorine gas reacts with iron.

Use Table 2.

[1 mark]

0 | 1 |. Balance the equation for the reaction between iron and bromine.

[1 mark]

$$2Fe + 3$$
 $Br_2 \rightarrow 2FeBr_3$

- 0 1 This question is about mixtures.
- 0 1 Substances are separated from a mixture using different methods.

Draw **one** line from each substance and mixture to the best method of separation.

[3 marks]

0 1. 2 A student filters a mixture.

Figure 1 shows the apparatus.

Figure 1

Suggest one improvement to the apparatus.

Place the filter paper cone in a filter funnel

[1 mark]

0 1 . 3 Complete the sentences.

Choose answers from the box.

[2 marks]

ndense evaporate freeze melt solidify

In simple distillation, the mixture is heated to make the liquid evaporate

The vapour is then cooled to make it ______ conden se____.

Figure 2 shows the arrangement of atoms in a pure metal and in a mixture of metals.

Figure 2

0 1.4	Calculate the percentage of metal B atoms in the mixture of metals shown in Figure 2. $\frac{2}{20} \times 100 = 10^{\circ}/_{\bullet}$	2 marks]
	Percentage of metal B atoms =	
0 1.5	What is a mixture of metals called?	[%] [1 mark]
	Tick one box. An alloy	
	A compound	
	A molecule A polymer	
0 1.6	Why is the mixture of metals in Figure 2 harder than the pure metal? Tick one box.	[1 mark]
	The atoms in the mixture are different shapes.	
	The layers in the mixture are distorted.	
	The layers in the mixture slide more easily.	
	The mixture has a giant structure.	

- 1 0 This question is about materials and their properties.
- 1 0 . 1 Figure 13 shows a carbon nanotube.

Figure 13

The structure and bonding in a carbon nanotube are similar to graphene.

Carbon nanotubes are used in electronics because they conduct electricity.

Explain why carbon nanotubes conduct electricity.

Each carbon is joined to 3 other carbon atoms by covalent [2 marks] bonds, so there is I spare electron from each carbon forming a sea of delocalised Zinc oxide can be produced as nanoparticles and as fine particles.

1 0 3 A nanoparticle of zinc oxide is a cube of side 82 nm

Figure 15 represents a nanoparticle of zinc oxide.

Figure 15

Calculate the surface area of a nanoparticle of zinc oxide	Calculate	the surface	area of a	nanoparticle	of zinc oxid
--	-----------	-------------	-----------	--------------	--------------

Give your answer in standard form.

Water

	$82 \times 82 \times 6 = 40344 \text{ nm}^2$
	= 4.0344 × 10 4 nm 2
	2 4.03 × 10 t nm²
	Surface area = 4.03 × 10 4 nm ²
1 0 . 4	Some suncreams contain zinc oxide as nanoparticles or as fine particles.
0 8	Suggest one reason why it costs less to use nanoparticles rather than fine particles in suncreams. Nanoparticles have a greater surface area for reaction to [1 mark] take place, so less zinc oxide is needed. This question is about structure and bonding.
0 8.1	Which two substances have intermolecular forces between particles? [2 marks] Tick (✓) two boxes.
	Diamond
	Magnesium
	Poly(ethene)
	Sodium chloride

0 8 . 2 Table 5 shows the structures of three compounds.

Table 5

Diagrams not to scale

Compound	Structure
Carbon dioxide	Key
Magnesium oxide	Key O ² - Mg ² +
Silicon dioxide	Key O Si

Compare the structure and bonding of the three compounds:

- · carbon dioxide
- magnesium oxide
- · silicon dioxide.

Carbon dioxide has a simple covalent structure. The atoms are joined by covalent bonds, which is formed by atoms sharing pairs of electrons.

Magnesium oxide is a giant ionic compound. It has ionic bonding, which is the electrostatic force of attraction between appositely charged ions.

Silicon dioxide has a giant covalent structure. Each silicon is joined to 4 oxygen through covalent bonds.